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Surface effects are generally prevailing in confined colloidal systems. Here we report on dispersed nano-
particles close to a fluid membrane. Exact results regarding the static organization are derived for a dilute
solution of nonadhesive colloids. It is shown that thermal fluctuations of the membrane broaden the density
profile, but on average colloids are neither accumulated nor depleted near the surface. The radial correlation
function is also evaluated, from which we obtain the effective pair potential between colloids. This entropically
driven interaction shares many similarities with the familiar depletion interaction. It is shown to be always
attractive with range controlled by the membrane correlation length. The depth of the potential well is com-
parable to the thermal energy, but depends only indirectly upon membrane rigidity. Consequences for the
stability of the suspension are also discussed.
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I. INTRODUCTION

Fluid membranes are soft surfaces, self-assembled from
surfactant solutions[1]. They assume a large variety of
shapes and topologies, which have been accurately explained
in terms of bending energy[2,3]. In most practical realiza-
tions, however, membrane suspensions are not pure but in-
corporate colloidal entities as well. In living systems, for
instance, lipid bilayers organize the cell into compartments
that keep apart different chemical environments[6]. Biologi-
cal membranes are therefore in contact with various kinds of
proteins, macroions, or more complex structures[4]. Mem-
brane phases used in detergents or cosmetics also include
numerous additives, like macromolecules or colloids, in or-
der to improve efficiency and to control viscoelastic proper-
ties [5]. One is then naturally inclined to investigate transfor-
mations that may occur upon addition of colloids, and
several studies have recently been devoted to these complex
systems. Essentially, these have focused on the softening of
membrane resulting from the depletion of spherical and rod-
like colloids [7], or the depletion[8,9] and adsorption
[10–12] of flexible polymers, but the predicted effects are
usually small compared to the bare rigidity of the bilayer.
Bending of a membrane upon colloid adsorption has also
drawn growing interest because of potential applications for
drug encapsulation and gene delivery[13–17]. Nevertheless,
a common feature shared by most theoretical studies is that
membrane fluctuations are systematically disregarded. This
point clearly illustrates the technical difficulty to couple bulk
and surface degrees of freedom.

Generally, the mutual influence of bulk and surface prop-
erties on each other is a challenging problem[18,19]. The

situation has now been clarified for bidispersed hard-sphere
suspensions[20–22]: when in contact with a flat substrate,
excluded-volume effects are known to push the larger beads
toward the wall of the sample[23]. Recent experiments done
with curved or corrugated surfaces have shown that geomet-
ric features of the surface can also create and modulate en-
tropic force fields[24,25]. These depletion forces can be
used to grow oriented colloidal crystal, with numerous po-
tential applications such as the fabrication of photonic band
gap crystals[26]. The theoretical description of those sys-
tems usually requires advanced density functional techniques
[21], which have been adapted to study depletion potentials
close to arbitrarily shaped substrates[27]. In this work, we
follow a different line and present some additional findings
regarding the static organization of nanoparticles near afluc-
tuatingsurface. Given the increasing complexity of the prob-
lem, we focus on the simplest system consisting of a mono-
dispersed, dilute solution of nonadhesive colloids. This
allows us to derive exact results and to highlight nontrivial
phenomena, such as membrane-induced interaction between
the colloids.

This paper is organized as follows. In Sec. II, we present
an exact computation of the partition function of the global
system. The determination of the variation of the particle
density with distance is the aim of Sec. III. The computations
of the radial distribution function and the resulting pair po-
tential and related discussion are presented in Sec. IV. We
draw some concluding remarks in the last section. Finally,
some technical details are relegated to the Appendixes.

II. THE PARTITION FUNCTION

Consider a fluctuating membrane in contact with a colloi-
dal suspension, consisting of nanoparticles immersed in
some solvent. We assume that the colloids cannot permeate
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through the bilayer on experimental time scales, in such a
way that the membrane acts as a flexible but impenetrable
wall for the particles. In this paper, we shall use the notation
r =sr ,zd, wherer=sx,yd is the transverse vector andz the
perpendicular component. The position of the(almost flat)
membrane is specified through the displacement fieldhsx,yd.
The surface fluctuates around the horizontal planez=0, so
that the heighthsx,yd may take either positive or negative
values. The equilibrium statistical mechanics of membranes
is based on the Helfrich Hamiltonian[2]

H0fhg =
1

2
E d2rfksDhd2 + ss¹hd2 + mh2g, s1d

wheresk ,s ,md are the elastic constants of the membrane. In
what follows, we shall rather use the rescaling parameters
k̂=bk, ŝ=bs, and m̂=bm, where we define as usualb
=1/kBT, with T the absolute temperature andkB the Boltz-
mann constant. Let us also introduce the height-height cor-
relation function

Gsr − r8d = khsrdhsr8dl0 − khsrdl0khsr8dl0, s2d

from which one obtains the mean-squared fluctuationsj'
2

=Gs0d. Some properties ofG are recalled in Appendix A.
We intend to compute some statistical properties of the

system under investigation, namely, the particle density pro-
file and radial distribution function[28]. For a dilute solu-
tion, one may ignore the interactions between particles and
treat them as an ideal gas in confined geometry. Since we are
interested in those systems containing a considerable number
of particles (thermodynamic limit), the physical quantities
are independent of the particular choice of statistical en-
semble. For convenience, we shall consider both thecanoni-
cal and thegrand canonicalensembles. The grand canonical
partition function, denotedZG, is the Laplace transform of
the canonical partition function, that is,

ZG = o
N=0

+`

fNZcsNd, s3d

with f the fugacity. In the above equality, the canonical par-
tition function ZcsNd is

ZcsNd =
1

l3NN!
E d3r 1 ¯ d3r NE Dhe−bHfhg

3exps− bo
i=1

N

Vsr idd. s4d

The functional integral extends over all configurations of the
field h, weighted with the Helfrich energy(1). The positions
RN=sr 1, . . . ,r Nd of theN particles are restricted to the upper
side of the three-dimensional space limited by the mem-
brane. In the above equation, the thermal wavelengthl re-
sults from integration over the particles momenta, and
colloid-membrane interactions are accounted for through the
(contact) hard-core potentialVsr d,

Vsr id = H 0 if zi . hsxi,yid,

+ ` otherwise.
J s5d

With these considerations, we first examine the canonical
partition function. It can be written

Zc =
Z0

l3NN!
E p

i=1

N

d3r iwNsRNd, s6d

where it is convenient to define the functionwN

wNsRNd = Z0
−1E Dhe−bHfhgp

i=1

N

u„zi − hsxi,yid…. s7d

Here, Z0=eDh exph−bHfhgj is the partition function of a
membrane in the absence of particlessN=0d, andusxd is the
step function. It is easy to see, from its definition(7), thatwN
satisfies the following boundary conditions at infinity:

wNusr1, . . . ,rN;z1, . . . ,zNduz1=¯=zN=−` = 0, s8d

wNusr1, . . . ,rN;z1, . . . ,zNduz1=¯=zN=+` = 1 s9d

for fixed values of the transverse vectorssr1, . . . ,rNd. The
function wNsRNd has to be understood as the partition func-
tion of a membrane whose configurations are subjected toN
restrictionshsxi ,yidøzi, with 1ø i øN. It is generally a com-
plicated function of the relative transverse distancesuri −r ju
and perpendicular componentszi. Indeed, the translation
symmetry is preserved in the parallel directions, but due to
the presence of the membrane, this symmetry is broken in
the perpendicular one. After some algebra detailed in Appen-
dix B, we find thatwN is given by

wNsRNd = s2pd−N/2fdetGNg−1/2E
−`

z1

dz18 ¯ E
−`

zN

dzN8

3expS−
1

2 o
i,j=1

N

zi8fGN
−1gi j zj8D , s10d

whereGN is the squared matrix of orderN whose elements
are the propagatorsfGNgi j =Gsri −r jd defined in Eq.(2). This
expression is compatible with the boundary conditions(8)
and(9), and more generally we can deduce from Eq.(10) the
fundamental property according to which

0 ø wNsr1, . . . ,rN;z1, . . . ,zNd ø 1 s11d

for all values of the position vectorssr 1, . . . ,r Nd. The right-
hand side inequality relies on the fact thatwN is an incom-
pleteGaussian multiple integral.

Now, we direct our attention to the grand canonical func-
tion. Formally, it is written

ZG = o
N=0

+`

fN 1

l3NN!
E Dhe−bHfhg E p

i=1

N

d3r iu„zi − hsrid…

=E Dhe−bHfhgo
N=0

+`

fN 1

l3NN!
SE d3r u„z− hsrd…DN

=E Dhe−bHfhg expS f

l3 E d3r u„z− hsrd…D . s12d

Integrating over thez variable then yields
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ZG = efV/2l3
3E Dh exp„− bHfhg − fl−3E d2r hsrd….

s13d

Here,V=S3L is the total volume occupied by the system
under investigation,S is the area of the horizontal plane, and
L /2 represents the upper bound of the perpendicular coordi-
natez. The above functional integral can be easily calculated,
and we find

E Dh exps− bHfhg − fl−3E d2r hsrd…

= Z0 expff2SG̃s0d/s2l6dg, s14d

with G̃s0d=1/m̂ the Fourier transform of the propagatorG at
q=0. To obtain this result, we have applied the general for-
mula (B5) of Appendix B to the particular sourceJsrd
=−fl−3. Finally, we have the simple,exactexpression for the
partition functionZG

ZG = Z0 expS fV

2l3DexpS f2S

2m̂l6D . s15d

Noticeably,ZG splits into three parts. The first two factors
are the standard contributions:Z0 is the partition function of
the membrane in a particle-free solvent, and expsfV /2l3d is
the partition function of an ideal gas of colloids(remember
that the particles are restricted to the upper half of the space).
All the information concerning the interplay between bulk
and surface contributions finally factorizes in the last term of
Eq. (15).

With this expression ofZG, we are now able to evaluate
the average number of colloids

kNl = f
] ln ZG

]f
=

fV

2l3S1 +
2f

m̂Ll3D . s16d

In addition to the usual termfV /2l3, we find a second con-
tribution that happens to be negligible at low concentration
sf !1d or for very large perpendicular extensionsL
@m̂−1l−3d. For the sake of simplicity, we will assume there-
after that these requirements are satisfied so that the bulk
concentration is

r` =
kNl
V/2

. fl−3. s17d

Note, however, that the second contribution in Eq.(16) could
not be disregarded in a strongly confining system. This point
might be relevant for experimental realizations involving
colloids in a lamellar phase[29,30] or in a sponge phase[31]
of membranes.

III. PARTICLE DENSITY PROFILE

The concentration profile of an ideal gas of colloids in
contact with a rigid wall located atz=0 is simply rHW
=r`uszd. For a flexible interface, the situation is quite differ-
ent as thermal undulations are expected to broaden the dis-

tribution. In this section, we examine the mean value of the
particle density at pointr defined by

rsr d =Ko
i=1

N

d3sr − r idL = Nkd3sr − r 1dl, s18d

with d3 the three-dimensional Dirac distribution. The averag-
ing procedure implies integration over the colloid configura-
tions as well as internal degrees of freedom of the mem-
brane. Explicitly, we have

rsr d =
1

ZG
o
N=0

+`
fN

l3NN!
NE Dh e−bHfhg E p

i=1

N−1

d3r iu„zi

− hsxi,yid…u„z− hsrd…

=
fl−3

ZG
E Dh e−bHfhg expS f

l3 E d3r 8u„z8 − hsr8d…D
3u„z− hsrd… = Z0

fl−3

ZG
efV/2l3

3

E Dh expS− bHfhg − fl−3E d2r8hsr8dDu„z− hsrd…

Z0
.

s19d

The last functional integral can be computed making a
simple translation of the fieldh→h+ f /l3m̂. We finally get

rsr d = fl−3w1sr;z+ f/l3m̂d, s20d

wherew1 is a particular function of type(10), that is,

w1sr;z+ f/l3m̂d

= f2pGs0dg−1/2 E
−`

z+f/l3m̂

dz8 expS−
1

2
G−1s0dz2D . s21d

For N=1, the squared matrixG1 in relation (10) reduces to
Gs0d=j'

2 . Recalling thatfl−3 equals the bulk densityr`, we
find the final expression for the density profile:

rszd = r`

1

2F1 + erfSz+ z0

Î2j'

DG , s22d

with the characteristic length

z0 = r`m̂−1. s23d

The concentration profile is shown in Fig. 1. As expected, it
depends only on the perpendicular distancez (homogeneity
property in the parallel directions). For fixed parameterm̂,
the scalez0 becomes smaller as the particle density is de-
creased. The physical meaning of this length can be under-
stood as follows. When in contact with the colloidal solution,
the membrane experiences the osmotic pressure of the par-
ticles. At low concentration, this pressure is proportional to
the concentration of particles in contact with a flat surface
posm=kBTr`. Indeed, we see from Eq.(13) that integration
over the colloid positions leads to an effective Hamiltonian
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for the membraneHef f=H0+posmed2r hsrd. The average po-
sition of the membrane is then shifted to its new valuekhl
=−z0, so that the concentration profile(or the dividing sur-
face) is translated from the same distance. For a symmetric
system(particles on both sides with the same chemical po-
tential), this length would just vanish. Note that whenz=
−z0, the local particle density is reduced to half of the bulk
value, that is,r` /2.

Now, let us compute theexcessparticle density, defined as
the first moment of the density profile[32]

G =E
−`

+`

dzfrszd − r`usz+ z0dg. s24d

G is called theadsorptionof the species, since a large posi-
tive value ofG is evidence for particle accumulation at the

surface. Conversely, a negative value ofG indicates that the
concentration in the surface vicinity is lower than the con-
centration in the bulk phase. Using relation(22), we find
after a simple integration

G = 0, s25d

meaning that there is, on average, neither accumulation nor
depletion of particles near the membrane. Actually, this result
comes from the cancellation of two effects: insertion of par-
ticles into the holes and valleys of the rough surface exactly
compensates for the depletion from the convex regions, as
can be seen in Fig. 1. Equation(25) also implies that there is
no additional contribution to the interfacial tension, and con-
sequently no spontaneous curvature of the membrane in-
duced by the colloids. However, this result is valid only for
vanishing particle radiusa. Although finite size effects are
not easily included in the theory, one does not expect these
results to hold any longer fora,ji [16,33].

IV. RADIAL DISTRIBUTION FUNCTION
AND EFFECTIVE POTENTIAL

To better characterize the statistical properties of the sys-
tem, we now focus on the pair distribution function defined
as

gsr ,r 8d =
osiÞ jd kd3sr − r idd3sr 8 − r jdl

rsr drsr 8d
. s26d

Using the same techniques as before, we find thatgsr ,r 8d
can be expressed in terms of thewN functions defined in Eq.
(10). Without further detail, we obtain the formal expression

gsr ,r 8d =
w2sr,r8;z+ z0,z8 + z0d

w1sr;z+ z0dw1sr8;z8 + z0d
. s27d

As one could expect, onlywi’s with N=1 and 2 come out of
the calculations. For the sake of completeness, we give ex-
plicitly the radial distribution function

gsr ,r 8d =

s2pd−1fdetG2g−1/2E
−`

z+z0

dz1E
−`

z8+z0
dz2 expF−

1

2
sz1,z2dG2

−1Sz1

z2
DG

1

4
F1 + erfSz+ z0

Î2j'

DGF1 + erfSz8 + z0

Î2j'

DG , s28d

whereG2 is the 232 correlation matrix

G2 = F Gs0d Gsur − r8ud
Gsur − r8ud Gs0d G s29d

and detG2=Gs0d2−Gsur−r8ud2. Once again, the result de-
pends on the relative transverse distanceur−r8u, whereas it
varies withz andz8 separately. We emphasize that this pair
correlation function would be identically unity for an ideal

gas confined by a rigid wall. Here,surface fluctuationsgive
rise tobulk correlationsbetween colloids over distances that
depends both on their separation and on their upright dis-
tance from the membrane. For fixedz and z8, gsr ,r 8d is
maximum whenr=r8 and decreases to 1 as the transverse
separation increases. The equalitygsr ,r 8d=1 (no correla-
tions) is achieved only either whenz or z8 goes to +̀ at fixed
parallel distanceur−r8u, or whenur−r8u→ +` at fixedz and
z8. Indeed, the former requirement expresses that the colloids

FIG. 1. Reduced densityrszd /r` as a function of the reduced
perpendicular distancez/j'. The density profile is symmetric with
respect to the dotted linez=−z0, so that the number of particles that
enter the depressions of the undulating surface exactly compensates
for the depleted ones.
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do not feel the surface any more at elevations higher thanj',
whereas the latter asserts that correlations vanish at parallel
separation much larger than the membrane correlation length
ji (see Appendix A).

With the help of the computed one- and two-point distri-
bution functions, we can extract the membrane-induced in-
teractions between particles. According to Eq.(6), an effec-
tive N-body potentialUsr 1, . . . ,r Nd may be defined through

wNsr1, . . . ,rN;z1, . . . ,zNd = e−bUsr 1,. . .,r Nd. s30d

The analysis developed in this report indicates that the many-
body interaction decomposes as

Usr 1, . . . ,r Nd = o
i

U1sr id + o
hi,jj

U2sr i,r jd

+ ¯ + UNsr 1, . . . ,r Nd. s31d

Here, U1 is the effective external potential resulting from
thermal undulations of the membrane. We easily find

U1sr d = − kBT ln
rszd
r`

. s32d

As the reduced densityrszd /r` ranges from 0 to 1, this po-
tential is always repulsive and tends to move the particles
away from the surface. Note that the corresponding forceF
=−dU1/dz exerted on a particle by surface undulations re-
mains finite at “contact:”Fs−z0d=kBT/j' (recall that −z0 is
the average position of the membrane under the osmotic
pressure of the colloids). Surprisingly, this force increases as
the roughness of the surfacej' decreases, but it has to be
this way asF eventually diverges in the hard-wall limit.

Regarding the potential of mean forceU2sr ,r 8d, we find

U2sr ,r 8d = − kBT ln gsur − r8u,z,z8d. s33d

The normalization ofgsr ,r 8d, Eq. (27), ensures that only
two-body terms are accounted for. The pair potentialU2 is
shown in Fig. 2 for a membrane with no surface tensionss
=0d and for fixedz=z8: it is negativeat short parallel dis-

tances and vanishes at large separations. Accordingly, col-
loids that are close to the membrane tend to aggregate even if
there are only hard-core repulsions in our description. We
can evaluate the depth of this potential: diagonalizing the
quadratic form in Eq.(28) leads to

U2sr = r 8d = − kBT ln 2 + kBT lnF1 + erfSz+ z0

Î2j'

DG .

s34d

Of course, the interaction still depends on thez position of
the pair of colloids. The depth of the potential increases with
decreasing altitude, and is of orderkBT for z=−z0. At larger
separation,U2 displays a tiny repulsive barrier(0.01kBT at
most). In the limit d= ur−r8u@ji, we show in Appendix C
that the potential of mean force vanishes exponentially,

U2sdd , kBTÎji

d
e−d/ji, s35d

for z=z8=z0.

V. DISCUSSION

In this paper, we have adapted the usual many-body sta-
tistical mechanics in order to include an additional degree of
freedom, namely, the thermal fluctuations of the membrane.
It has been shown that surface undulations broaden the den-
sity profile and generates correlations among an essentially
ideal gas system. As can be seen in Eq.(13), partial integra-
tion over the positions induces a linear coupling with the
membrane height in the case of pointlike particles. For finite-
size objects, one would certainly expect further couplings
with membrane curvature as well as with higher-order terms,
but this point is far beyond the scope of this paper.

As a consequence of surface fluctuations, the colloids at-
tract each other through the potential of mean forceU2. In-
terestingly, the only remaining signatures of the elastic pa-
rameters of the membrane are the length scalesji, j', andz0.
For two particles at a given position, the configurational en-
tropy of the membrane increases as the colloids come closer.
This effective pair interaction is of order of the thermal en-
ergy for particles near the average position of the membrane,
and is in many respects similar to the familiar depletion in-
teraction. In particular, it would simply sum up with a direct
colloid-colloid potential in a more realistic system. Note that
our approach is to some extent peculiar, in the sense that we
trace out the degrees of freedom of the “slow” variable, end-
ing up with an effective Hamiltonian for the small particles.
This procedure usually leads to a very poor description of the
system, because one has generally to resort to uncontrolled
approximations. Here, the situation is more refined as we
managed to perform exact calculations. The potential of
mean force(33) is therefore expected to be very accurate for
colloids much smaller than the correlation lengthji.

Finally, we would like to emphasize the fact thatU1 and
U2 are the dominant interactions at low concentrations. The
framework developed in this paper would in principle allow
us to evaluate the relative weight of many-body contribu-
tions, but these would only be relevant at the onset of a

FIG. 2. Equal-height effective pair potentialbU2sr ,r8 ,z=z8d as
a function of the reduced transverse distanceur−r8u /ji. The curves
corresponds to different values of the perpendicular distance. From
bottom to top:sz+z0d /j'=0, 0.5, and 1. The depth of the potential
well is of orderkBT for z+z0=0, and vanishes exponentially at large
separations.
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hypothetical aggregation. Here however, the drift force from
the membrane always move the particle away from the sur-
face so that two-body attraction is not prevailing. One could
still imagine to enforce particle accumulation near the mem-
brane through a small attractive colloid-membrane interac-
tion. Whether membrane fluctuations could then induce sur-
face crystallization is an interesting point, work on this
question is currently under progress.
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APPENDIX A

In this appendix, we recall a couple of results on fluid
membranes. The height-height correlation function is defined
as

Gsrd = khsrdhs0dl0 − khsrdl0khs0dl0

=E d2q

s2pd2

eiq·r

k̂q4 + ŝq2 + m̂
, sA1d

with the notationq= uqu. Here, the thermal averagesk¯l0 are
performed with the Helfrich Hamiltonian(1) in the absence
of particle. For a bilayer without surface tensionss=0d, the
integral over the Fourier modes leads to

Gsrd = −
4

p
j'

2 keiSÎ2
r

ji
D , sA2d

with keisxd=ImfK0sxeip/4dg is a Kelvin function [34]. We
then define the mean roughness of the membranej'

=Gs0d1/2=2−3/2sk̂ ·m̂d−1/4, and the in-plane correlation length
ji=21/2sk̂ / m̂d1/4 characterizing the exponential decay ofGsrd
at large distances

Gsrd , e−r/ji, r @ ji. sA3d

APPENDIX B

The aim of this appendix is the proof of formula(10) that
defines the functionwN. To this end, we first compute its
multiple derivative

]NwN

]z1 ¯ ]zN
= Z0

−1E Dh e−bHfhgp
j=1

N

d„zj − hsxj,yjd….

sB1d

Writing the integral form of the Dirac distribution

d„zj − hsxj,yjd… =E
−`

+` dkj

2p
eikjfzj−hsxj,yjdg sB2d

allows us to rewrite Eq.(B1) as

]NwN

]z1 ¯ ]zN
=E

−`

+`

p
j=1

N Sdkj

2p
eikjzjD

3

E Dh exps− bHfhg +E d2r Jsrdhsrdd

Z0
.

sB3d

Here, we have introduced the source

Jsrd = − io
j=1

N

kjd2sr − r jd, sB4d

with the two-dimensional vectorr j =sxj ,yjd. The functional
integration in relation(B3) is trivial, since the Hamiltonian
Hfhg is quadratic in the fieldh. We simply give the result

E Dh exps− bHfhg +E d2r Jsrdhsrdd

Z0

= expS1

2
E d2rE d2r8JsrdGsr − r8dJsr8dD , sB5d

where Gsr−r8d is the membrane propagator, relation(2).
Now, replace the sourceJsrd by its definition(B4) to find

1

2
E d2rE d2r8JsrdGsr − r8dJsr8d = −

1

2o
j=1

N

kiGsri − r jdkj .

sB6d

We therefore obtain

]NwN

]z1 ¯ ]zN
=E

−`

+`

p
j=1

N
dkj

2p
eikjzj expS−

1

2 o
i,,j=1

N

kifGNgi j kjD
= s2pd−N/2fdetGNg−1/2 expS−

1

2 o
i,j=1

N

zi8fGN
−1gi j zj8D .

sB7d

The N2 coefficientsfGNgi j =Gsri −r jd, 1ø i, j øN, define a
squared matrixGN. We remark that the above multiple inte-
gral is Gaussian. A straightforward integration yields the ex-
plicit expression of the functionwN, formula (10).

APPENDIX C

At large transverse separationd= ur−r8u@ji, it is
possible to evaluate completely the two-point functionw2.
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Indeed, the propagator satisfies in this limitGsdd!Gs0d
=j'

2 , so that we are naturally led to define the small param-
eter a=Gsdd /Gs0d. At first order, one has detG=j'

2 f1
+Osa2dg, and

sz1,z2dG−1Sz1

z2
D =

z1
2

j'
2 +

z2
2

j'
2 − 2a

z1z2

j'
2 + Osa2d. sC1d

Expanding the exponential in Eq.(10) up to first order, we
find

w2sd,z,z8d = s2pd−1j'
−2E

−`

z+z0

dz1E
−`

z8+z0
dz2 expS−

z1
2 + z2

2

2j'
2 D

3S1 + a
z1z2

j'
2 + Osa2dD = w1szdw1sz8d +

Gsdd
2pj'

2

3expS−
sz+ z0d2

2j'
2 DexpS−

sz8 + z0d2

2j'
2 D + Osa2d.

sC2d

Taking the logarithm of this expression and using the defini-
tion (A2) for Gsdd finally leads to Eq.(35).
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