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Statistical mechanics of a colloidal suspension in contact with a fluctuating membrane
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Surface effects are generally prevailing in confined colloidal systems. Here we report on dispersed nano-
particles close to a fluid membrane. Exact results regarding the static organization are derived for a dilute
solution of nonadhesive colloids. It is shown that thermal fluctuations of the membrane broaden the density
profile, but on average colloids are neither accumulated nor depleted near the surface. The radial correlation
function is also evaluated, from which we obtain the effective pair potential between colloids. This entropically
driven interaction shares many similarities with the familiar depletion interaction. It is shown to be always
attractive with range controlled by the membrane correlation length. The depth of the potential well is com-
parable to the thermal energy, but depends only indirectly upon membrane rigidity. Consequences for the
stability of the suspension are also discussed.
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I. INTRODUCTION situation has now been clarified for bidispersed hard-sphere

Fluid membranes are soft surfaces, self-assembled frofiSPension$20-22: when in contact with a flat substrate,
surfactant solutiong1]. They assume a large variety of €xcluded-volume effects are known to push the larger beads

shapes and topologies, which have been accurately explainé@wvard the wall of the samp23]. Recent experiments done
in terms of bending energf2,3]. In most practical realiza- With curved or corrugated surfaces have shown that geomet-

tions, however, membrane suspensions are not pure but ific features of the surface can also create and modulate en-
corporate colloidal entities as well. In living systems, for tropic force fields[24,25. These depletion forces can be
instance, lipid bilayers organize the cell into compartmentsised to grow oriented colloidal crystal, with numerous po-
that keep apart different chemical environmefiés Biologi-  tential applications such as the fabrication of photonic band
cal membranes are therefore in contact with various kinds ofjap crystal§26]. The theoretical description of those sys-
proteins, macroions, or more complex structuidls Mem-  tems usually requires advanced density functional techniques
brane phases used in detergents or cosmetics also incluge1], which have been adapted to study depletion potentials
numerous additives, like macromolecules or colloids, in orclose to arbitrarily shaped substraf@d]. In this work, we
der to improve efficiency and to control viscoelastic proper-follow a different line and present some additional findings
ties[5]. One is then naturally inclined to investigate transfor-regarding the static organization of nanoparticles nehrca
mations that may occur upon addition of colloids, andtuatingsurface. Given the increasing complexity of the prob-
several studies have recently been devoted to these complim, we focus on the simplest system consisting of a mono-
systems. Essentially, these have focused on the softening dfspersed, dilute solution of nonadhesive colloids. This
membrane resulting from the depletion of spherical and rodallows us to derive exact results and to highlight nontrivial
like colloids [7], or the depletion[8,9] and adsorption phenomena, such as membrane-induced interaction between
[10-17 of flexible polymers, but the predicted effects arethe colloids.
usually small compared to the bare rigidity of the bilayer. This paper is organized as follows. In Sec. I, we present
Bending of a membrane upon colloid adsorption has als@an exact computation of the partition function of the global
drawn growing interest because of potential applications fogystem. The determination of the variation of the particle
drug encapsulation and gene delivgi3—17. Nevertheless, density with distance is the aim of Sec. lll. The computations
a common feature shared by most theoretical studies is thaf the radial distribution function and the resulting pair po-
membrane fluctuations are systematically disregarded. Thigntial and related discussion are presented in Sec. IV. We
point clearly illustrates the technical difficulty to couple bulk draw some concluding remarks in the last section. Finally,
and surface degrees of freedom. some technical details are relegated to the Appendixes.
Generally, the mutual influence of bulk and surface prop-

erties on each other is a challenging problgi8,19. The
ging p £18,19 Il. THE PARTITION FUNCTION

Consider a fluctuating membrane in contact with a colloi-
*Corresponding author. Electronic address: th.bickel@cpmoh.udlal suspension, consisting of nanoparticles immersed in
bordeaux1.fr some solvent. We assume that the colloids cannot permeate
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through the bilayer on experimental time scales, in such a With these considerations, we first examine the canonical
way that the membrane acts as a flexible but impenetrablpartition function. It can be written

wall for the particles. In this paper, we shall use the notation = N

r=(p,z), wherep=(x,y) is the transverse vector armthe z =0 & on(R 6
perpendicular component. The position of tz@most flaj © NN g en(Rw), ©)
membrane is specified through the displacement fiéldy). o _ ) )

The surface fluctuates around the horizontal plané, so  Where it is convenient to define the functigq

that the heighth(x,y) may take either positive or negative N

values. The equilibrium statistical mechanics of membranes on(Ry) = Zglf Dhe PN oz - h(x,y)).  (7)

is based on the Helfrich Hamiltonig2] i=1

1 Here, Z,=/Dh expg{-BH[h]} is the partition function of a
Holh] = > J d®p[ k(Ah)? + o(Vh)? + uh?], (1) membrane in the absence of particids=0), and f(x) is the
step function. It is easy to see, from its definitiah, thatey
where(k, o, u) are the elastic constants of the membrane. Irsatisfies the following boundary conditions at infinity:
what follows, we shall rather use the rescaling parameters

k=Bk, o0=Bo, and u=Bu, where we define as usua on Py oz 'ZN)|21="'=ZN=—°°=O’ (®)
=1/kgT, with T the absolute temperature akg the Boltz-
mann constant. Let us also introduce the height-height cor- en (P - PN - Bgym g = 1 9)

relation function .
for fixed values of the transverse vectdys, ...,p\). The

G(p-p') =<(h(p)h(p"))o— (h(p))o(h(p’))o, (2)  function ¢y(Ry) has to be understood as the partition func-
tion of a membrane whose configurations are subjectéd to
restrictionsh(x;,y;) <z, with 1<i<N. It is generally a com-
eolicated function of the relative transverse distanges pj|
and perpendicular components Indeed, the translation
symmetry is preserved in the parallel directions, but due to
e presence of the membrane, this symmetry is broken in
%

from which one obtains the mean-squared fluctuatighs
=G(0). Some properties o are recalled in Appendix A.
We intend to compute some statistical properties of th
system under investigation, namely, the particle density pro
file and radial distribution functiofi28]. For a dilute solu-
tion, one may ignore the interactions between particles an
treat them as an ideal gas in confined geometry. Since we a
interested in those systems containing a considerable numb
of particles (thermodynamic limit, the physical quantities 3 N
are independent of the particular choice of statistical en- (PN(RN):(ZW)_NIZ[deth]_llzf dZi"'f dz
semble. For convenience, we shall consider bothcdreoni- - w

e perpendicular one. After some algebra detailed in Appen-
x B, we find thatgy is given by

cal and thegrand canonicakensembles. The grand canonical 1 N

-y . . ’ _1 12
partition function, denotedg, is the Laplace transform of xexpl == > Z[Gn iz |, (10
the canonical partition function, that is, 2jj=1

o0 where Gy is the squared matrix of ordé whose elements
Ze= > NZJ(N), (3)  are the propagatofgyJ;;=G(p; - p;) defined in Eq(2). This
N=0 expression is compatible with the boundary conditi¢8s

with f the fugacity. In the above equality, the canonical par-2"d(9), and more generally we can deduce from Ed) the
tition function Z(N) is fundamental property according to which

0= (IDN(pll PNy e ,ZN) <1 (11)

_ 1 3 3 ~BH[h
2N = N3NNI fd fi-d erDhe prn for all values of the position vectors, ... ,ry). The right-
hand side inequality relies on the fact tha§ is anincom-
plete Gaussian multiple integral.
Now, we direct our attention to the grand canonical func-

tion. Formally, it is written
The functional integral extends over all configurations of the -

field h, weighted with the Helfrich energfl). The positions Zzo=S N 1
Rn=(rq,...,ry) of theN particles are restricted to the upper G~ S AN
side of the three-dimensional space limited by the mem-

brane. In the above equation, the thermal wavelength-

sults from integration over the particles momenta, and :f
colloid-membrane interactions are accounted for through the

N
Xexp(— B2 V(). (4)
i=1

N
f Phe i | TT o 06z - hipy)
i=1

+oo

1 N
Dhe Py, fN)\sNNI ( f d’ a(z- h(p)))
N=0 '

contacy hard-core potentiaV/(r), f
( ) P ") = f Dhe AN exp<—3 f dr H(Z—h(p))). (12
Vi) = 0 if z>h(x.y), © A
Ve otherwise. Integrating over the variable then yields
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f/2n3 N tribution. In this section, we examine the mean value of the
Zg=€ X f Dh exp(— BH[h] - f\ f d°p h(p)). particle density at point defined by

(13

Here, (0=SX L is the total volume occupied by the system
under investigationS is the area of the horizontal plane, and
L/2 represents the upper bound of the perpendicular coord
natez. The above functional integral can be easily calculated

N
p(r) = <E Ss(r - ri>> = N(35(r —11)), (18)
i=1

Y_vith &3 the three-dimensional Dirac distribution. The averag-
ing procedure implies integration over the colloid configura-
tions as well as internal degrees of freedom of the mem-

and we find brane. Explicitly, we have
Dhexp(- BH[h] - A3 f &p h(p)) 15 M . ”‘l
J p(r) = Z—GNEO WN Dh g PN r{ dri6(z
~ = - 1=
= Z, exfd f2°SE0)/(2\%)], (14)
_ ° ~h(x,y)) 6z h(p))
with G(0)=1/x the Fourier transform of the propagat@rat 3 f
g=0. To obtain this result, we have applied the general for- =-—— | Dhe#N exp(g f d®’ oz - h(P')))
mula (B5) of Appendix B to the particular sourcéd(p) G
=—f\"3. Finally, we have the simplexactexpression for the N~ 3
partition functionZg X 6(z=h(p)) = ZoZ—emm
G
Z5= 2 E f's 15
6= 208X 533 | 76 )- (15) J Dh exp(— BH[h] - 73 f dzp’h(p’)>0(z— h(p))
X .
Noticeably, Z5 splits into three parts. The first two factors 2y
are the standard contribution8j is the partition function of (19)

the membrane in a particle-free solvent, and(&892\3) is
the partition function of an ideal gas of colloidemember The last functional integral can be computed making a
that the particles are restricted to the upper half of the gpacesimple translation of the field— h+f/\34. We finally get

All the information concerning the interplay between bulk

— f\ -3 . 3~
and surface contributions finally factorizes in the last term of p(r) =\ y(piz+ TINw), (20
Eq. (15). where ¢, is a particular function of typ€l0), that is,
With this expression of, we are now able to evaluate o
the average number of colloids e1(piz+fIN°p)
3
Jln ZG 20 of z+fIN°n
= = — 1
(N)=f of 2)\3( ¥ ,&L)ﬁ)' (16) =[27G(0)]*? J dz exp(— 56‘1(0)22). (21)

—0

In addition to the usual terrfi()/2\3, we find a second con-
tribution that happens to be negligiblt_e at low concgntration:or N=1, the squared matrig; in relation(10) reduces to
(f<1) or for very large perpendicular extensioflL  G(0)=¢2. Recalling thatfA~3 equals the bulk density.., we

> i”\7%). For the sake of simplicity, we will assume there- find the final expression for the density profile:
after that these requirements are satisfied so that the bulk

concentration is o(2)= pwl s err( z+ Zo) ’ (22
2 |2¢
(N) s
po= - =T\73 (17) , -
Q)2 with the characteristic length
Note, however, that the second contribution in Ed) could Zo= pfu . (23

not be disregarded in a strongly confining system. This poin
might be relevant for experimental realizations involving
colloids in a lamellar phag®9,3Q or in a sponge phag81]

of membranes.

tI'he concentration profile is shown in Fig. 1. As expected, it
depends only on the perpendicular distamg@omogeneity
property in the parallel directionsFor fixed parametefr,
the scalez, becomes smaller as the particle density is de-
creased. The physical meaning of this length can be under-
IIl. PARTICLE DENSITY PROFILE stood as follows. Whe_n in contact with t_he colloidal solution,
the membrane experiences the osmotic pressure of the par-
The concentration profile of an ideal gas of colloids inticles. At low concentration, this pressure is proportional to
contact with a rigid wall located ar=0 is simply pyw  the concentration of particles in contact with a flat surface
=p..0(2). For a flexible interface, the situation is quite differ- p,s,=ksTp... Indeed, we see from E@13) that integration
ent as thermal undulations are expected to broaden the disver the colloid positions leads to an effective Hamiltonian
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! surface. Conversely, a negative valueloindicates that the

T

: concentration in the surface vicinity is lower than the con-
| centration in the bulk phase. Using relatié22), we find

[ after a simple integration
|

|

|

o
©

r=o, (25

meaning that there is, on average, neither accumulation nor
depletion of particles near the membrane. Actually, this result
comes from the cancellation of two effects: insertion of par-
ticles into the holes and valleys of the rough surface exactly
compensates for the depletion from the convex regions, as
can be seen in Fig. 1. Equatig®b5) also implies that there is
1 =2 0 S 7 no additional contribution to the interfacial tension, and con-
Perpendicular distance sequently no spontaneous curvature of the membrane in-
duced by the colloids. However, this result is valid only for
FIG. 1. Reduced density(z)/p., as a function of the reduced yanishing particle radius. Although finite size effects are

perpendicular distance/ ¢, . The density profile is symmetric with ot easily included in the theory, one does not expect these
respect to the dotted line=-z, so that the number of particles that resylts to hold any longer fa~ & [16,33.
enter the depressions of the undulating surface exactly compensates

o o
L o

Reduced density
o
N

for the depleted ones. IV. RADIAL DISTRIBUTION FUNCTION
AND EFFECTIVE POTENTIAL
for the membran@{q;=Hq+ Posm/ d%p N(p). The average po- To better characterize the statistical properties of the sys-

sition of the membrane is then shifted to its new vaihe  tem, we now focus on the pair distribution function defined
=-7,, so that the concentration profiler the dividing sur- s

face) is translated from the same distance. For a symmetric s (S5(r =) 8s(r" =17)
system(particles on both sides with the same chemical po- g(rr) = (i#) 73 ves ! (26)
tential), this length would just vanish. Note that whern ’ p(r)p(r")

-7, the local particle density is reduced to half of the bulk
value, that isp../ 2.

Now, let us compute thexcesgarticle density, defined as
the first moment of the density profi[82]

Using the same techniques as before, we find gtafr’)
can be expressed in terms of thg functions defined in Eq.
(10). Without further detail, we obtain the formal expression

+o0 g(r r,) - (P2(P1P,;Z+20yzl +ZO)
F=f dZp(2) - p.0(z+7)]. (24) ’ eUpiz+ ) ei(p'iZ +20)

B As one could expect, only;,’s with N=1 and 2 come out of
I' is called theadsorptionof the species, since a large posi- the calculations. For the sake of completeness, we give ex-
tive value ofI" is evidence for particle accumulation at the plicitly the radial distribution function

(27)

+Zy 7'+ 1
(2m) Y detG,] 12 f dz f ° dz, exp{ - —(zl,zz)gglcl )]
—o0 — 2 2

l|: r<z+zo>]|: (z’+zo)] '
—[1+erff — l+erf —
4 V2¢, V2¢,

whereg, is the 2X 2 correlation matrix gas confined by a rigid wall. Hersprface fluctuationgjive
rise tobulk correlationsbetween colloids over distances that
6= GO G(|p—p'|>}
2

depends both on their separation and on their upright dis-
- G(p-p') G(0) tance from the membrane. For fixedand z', g(r,r’) is

maximum whenp=p’ and decreases to 1 as the transverse
and deG,=G(0)>-G(|p-p'|)>. Once again, the result de- separation increases. The equalifyr,r')=1 (no correla-
pends on the relative transverse distafyeep’|, whereas it tions) is achieved only either whenor z’ goes to + at fixed

varies withz andz' separately. We emphasize that this pairparallel distancép—p’|, or when|p—p’| — +« at fixedz and
correlation function would be identically unity for an ideal z'. Indeed, the former requirement expresses that the colloids

gr,r')= (28)

(29)
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tances and vanishes at large separations. Accordingly, col-
0 loids that are close to the membrane tend to aggregate even if

/ there are only hard-core repulsions in our description. We
can evaluate the depth of this potential: diagonalizing the
quadratic form in Eq(28) leads to

Pair potential

z+7
Us(r=r")==kgTIn2+kgTIn| 1 +erf| —= .
V2§,

(34)

Of course, the interaction still depends on thposition of
h - s s n : . the pair of colloids. The depth of the potential increases with
Transverse distance decreasing altitude, and is of ordeyT for z=-z,. At larger
separation{{, displays a tiny repulsive barrigf.01kgT at
FIG. 2. Equal-height effective pair potentigdt,(p,p’',z=2") as mosd. In the limit d=|p-p’|> ¢, we show in Appendix C

a function of the reduced transverse distajpeep’|/ &. The curves that the potential of mean force vanishes exponentially,
corresponds to different values of the perpendicular distance. From

bottom to top:(z+zy,)/ ¢, =0, 0.5, and 1. The depth of the potential & _y
well is of orderkgT for z+2z,=0, and vanishes exponentially at large Uy(d) ~ kgT q A, (35)
separations.

for z=7'=z,.

do not feel the surface any more at elevations higher ghan
whereas the latter asserts that correlations vanish at parallel V. DISCUSSION

separation much larger than the membrane correlation length In this paper, we have adapted the usual many-body sta-

& (see Appendix A tistical mechanics in order to include an additional degree of

With the help of the computed one- and two-point distri- .
. . . . freedom, namely, the thermal fluctuations of the membrane.
bution functions, we can extract the membrane-induced in;

eractons bt parices, Accordng fo @ an efec. 123 been sho at e unatons bioaden e der
tive N-body potentials(r 4, ... ,ry) may be defined through y P 9 9 y

ideal gas system. As can be seen in 8@), partial integra-
oNPL - PNIZL . Zy) =€ P IN) (30) tion over the positions induces a linear coupling with the
. oo L membrane height in the case of pointlike particles. For finite-
The anaIyS|s Qeveloped in this report indicates that the manyg;, o objects, one would certainly expect further couplings
body interaction decomposes as with membrane curvature as well as with higher-order terms,
V(S EDNADEDD Un(rir)) but this point is far beyond the scope of'this paper.
i i As a consequence of surface fluctuations, the colloids at-
tract each other through the potential of mean fdigeln-

o U ) (81 terestingly, the only remaining signatures of the elastic pa-
Here, U, is the effective external potential resulting from f@meters of the membrane are the length scilés , andz.
thermal undulations of the membrane. We easily find For two particles at a given position, the configurational en-
tropy of the membrane increases as the colloids come closer.
Uy(r) = kT In @ (32 This effective pair interaction is of order of the thermal en-
1 - B .

ergy for particles near the average position of the membrane,

h ) ‘ hi and is in many respects similar to the familiar depletion in-
As the reduced density(2)/ p.. ranges from 0 to 1, this po- taraction. In particular, it would simply sum up with a direct

tential is always repulsive and tends to move the particlegioid-colloid potential in a more realistic system. Note that
away from the surface. Note that the corresponding féfce o approach is to some extent peculiar, in the sense that we
=-di4,/dz exerted on a particle by surface undulations re-yace out the degrees of freedom of the “slow” variable, end-
mains finite at “contact’F(-z))=kgT/¢, (recall that Zois g up with an effective Hamiltonian for the small particles.
the average position of the membrane under the osmoti¢his procedure usually leads to a very poor description of the
pressure of the colloidsSurprisingly, this force increases as system, because one has generally to resort to uncontrolled
the roughness of the surfage decreases, but it has to be gpproximations. Here, the situation is more refined as we
this way asF eventually diverges in the hard-wall limit. managed to perform exact calculations. The potential of

Regarding the potential of mean fortg(r,r’), we find  mean forcg33) is therefore expected to be very accurate for

Uy(rr')=—ksTIng(p-p'l,2.2). (33) coIIo_ids much smaller_ than the corrglation length
Finally, we would like to emphasize the fact thaf and

The normalization ofg(r,r’), Eq. (27), ensures that only i/, are the dominant interactions at low concentrations. The
two-body terms are accounted for. The pair poteriialis ~ framework developed in this paper would in principle allow
shown in Fig. 2 for a membrane with no surface tendien us to evaluate the relative weight of many-body contribu-
=0) and for fixedz=Z": it is negativeat short parallel dis- tions, but these would only be relevant at the onset of a

©
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the membrane always move the particle away from the sur- = 11
face so that two-body attraction is not prevailing. One could 2 - j=1
still imagine to enforce particle accumulation near the mem-

brane through a small attractive colloid-membrane interac- th exp(— ,BH[h]+fd2p J(p)h(p))
tion. Whether membrane fluctuations could then induce sur- %
face crystallization is an interesting point, work on this 2

question is currently under progress. (B3)

hypothetical aggregation. Here however, the drift force from N +o N .
PN f <_kleikaj>
Z, " IZy

T
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N

with the two-dimensional vectgp;=(x;,y;). The functional
APPENDIX A integration in relationB3) is trivial, since the Hamiltonian

In this appendix, we recall a couple of results on quidH[h] is quadratic in the fieldh. We simply give the result

membranes. The height-height correlation function is defined
as
Dh exp(—,BH[h]+fd2 J(p)h(p))
G(p) = (h(p)h(0))o = (h(p))o(h(0))o f porTE
[ oo o

SV ESCIS, (A1)
(27T)2Kq4+ 0'q2+,u :eX%%fd2pfd2p/J(p)G(p_p/)J(p/)>, (BS)

with the notationg=|q|. Here, the thermal averagés-), are
performed with the Helfrich Hamiltoniacl) in the absence
of particle. For a bilayer without surface tensien=0), the  where G(p—p’) is the membrane propagator, relati¢?).

integral over the Fourier modes leads to Now, replace the sourc#p) by its definition(B4) to find
4 =
G(p) =~ —§ikei<\'2§£) : (A2) 4 1N
m ! ! ry —
, ” > J dsz d*p'I(p)G(p-p")Ip’) = - 52 kG(pi — pk;.
with kei(x) =Im[Ky(xé™*] is a Kelvin function[34]. We j=1
then define the mean roughness of the membrgne (B6)

=G(0)Y2=2"3%(k-x)"Y4 and the in-plane correlation length
&=2Y2(k/ r)'"* characterizing the exponential decayGifp)
at large distances

Glp) ~ ¥4, p> ¢ (A3)

We therefore obtain

N N
&N(’DN = J‘+°° %. iKiz; 1
02y "+ 92y ) H erex 2 E ki[gN]ijkj

w j=1 2m ij=1
APPENDIX B

The aim of this appendix is the proof of formul&0) that
defines the functionpy. To this end, we first compute its

N
= (2m) ™V detGy] V2 exp - % > Zi’[gﬁll]ij Zj,) .

ij=1

multiple derivative (B7)
N
N ) . PO o _
PN :ZElf,Dh | 8z - h(x;.y)). The N coeff|(?|ents[gN]|] G(pi-p)), 1=<i, j<N, dgﬂne. a
9zy+++ dzy i1 squared matrbgy. We remark that the above multiple inte-
(B1) gral is Gaussian. A straightforward integration yields the ex-
plicit expression of the functiowy, formula (10).
Writing the integral form of the Dirac distribution
+00 d .
8z - h(x,y;) = f 2—kiékj[2rh<xj'vj>1 (B2) APPENDIX C
—0 o
At large transverse separatiod=|p-p’|>§, it is
allows us to rewrite Eq(B1) as possible to evaluate completely the two-point functign
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Indeed, the propagator satisfies in this lin@{(d) <G(0) , [P 7' +z Z2+2
=&, so that we are naturally led to define the small param- @(d,z,2') = (2m) ﬁf dzlf dz exp - 282
eter a=G(d)/G(0). At first order, one has de=£[1 - - +

a? G(d
+O( )], and X(l +azg_2jZ + O(Q,Z)) — @1(2)(p1(z/) + 277(-5%
2 ’ 2
2 2 . X ex —%)ex —%) +0(a?).
(zl,zz)g‘1<zi) = 5_21 + é - 2a§1—2j +0(a?. (C1) + - 2

Expanding the exponential in E¢LO) up to first order, we Taking the logarithm of this expression and using the defini-
find tion (A2) for G(d) finally leads to Eq(35).
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